Recommendations to report and interpret HLA genetic findings in coeliac disease
Logo Seec 200

CRISPR/Cas9-mediated multiplex gene editing of gamma and omega gliadins: paving the way for gliadin-free wheat

Wheat is a staple cereal in the human diet. Despite its significance, an increasing percentage of the population suffers adverse reactions to wheat, which are triggered by wheat gluten, particularly the gliadin fractions. In this study, we employed CRISPR/Cas [clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein] multiplexing to introduce targeted mutations into γ- and ω-gliadin genes of wheat, to produce lines deficient in one or both immunogenic gliadin fractions simultaneously. For this study, eight single guide RNAs (sgRNAs) were designed and combined into four plasmids to produce 59 modified wheat lines, of which 20 exhibited mutations in the target genes. Characterization of these lines through Sanger sequencing or next-generation sequencing revealed a complex pattern of InDels, including deletions spanning multiple sgRNAs. The mutations were transmitted to the offspring, and the analysis of homozygous derived lines by reverse-phase HPLC and monoclonal antibodies showed a 97.7% reduction in gluten content. Crossing these lines with other CRISPR/Cas lines deficient in the α-gliadins allowed multiple mutations to be combined. This work represents an important step forward in the use of CRISPR/Cas to develop gluten-free wheat.

¿Te ha gustado la entrada? Compártela

Este sitio web utiliza cookies propias y de terceros para recopilar información que ayuda a optimizar su visita a sus páginas web. No se utilizarán las cookies para recoger información de carácter personal. Al seguir navegando permite su uso. Tiene más informacion en Política de cookies